## ===================== ## Importing Estimators ## ===================== simDatFiles <- list.files("Carter/simData", pattern=".*\\.RData", full.names=TRUE) simDatFiles <- mixedsort(simDatFiles) for (f in simDatFiles) { load(f) # the simulation data frame always is called "res" Est.Results <- NULL res$repID <- res$replication cnt <- 1 print(paste0(Sys.time(), " ",f, " SimID=", cnt , "/", length(unique(res$repID)))) for(i in unique(res$repID)){ cnt<-cnt+1 DT <- res[res$repID==i, ] SimulationDescription <- DT[1, c(3:8)] AKdata <- as.data.frame(cbind.data.frame(id=c(1:nrow(DT)), effect=DT$d, se=DT$se, constant=1)) res0 <- rbind( RMA.est(d=DT$d, v=(DT$se)^2, long=TRUE), PETPEESE.est(DT$d, (DT$se)^2, PP.test = "one-sided", long=TRUE, runRMA=FALSE), pc_skew(t=(DT$d/DT$se), df=DT$N - 2, long=TRUE), pcurveEst(t=(DT$d/DT$se), df=DT$N - 2, progress=FALSE, long=TRUE, CI=FALSE), puniformEst(t.value=(DT$d/DT$se), n1=DT$n1, n2=DT$n2, skipBarelySignificant=TRUE), threePSM.est(d=DT$d, v=(DT$se)^2, min.pvalues=0, long=TRUE), fourPSM.est(d=DT$d, v=(DT$se)^2, min.pvalues=0, long=TRUE, fallback=FALSE), WAAP.est(d=DT$d, v=(DT$se)^2, long=TRUE), AK1.est(AKdata), AK2.est(AKdata), EK.est(d=DT$d, v=(DT$se)^2) ) p<-(1 - pt(q = abs(DT$d/DT$se), df = DT$N*2-2))*2 delta.included.M <- mean(DT$EstEffect[p < .05 & p >= 0]) if (is.nan(delta.included.M)) delta.included.M <- NA res0 <- rbind(res0, data.frame(method="pcurve", term="delta.included", variable="mean", value = delta.included.M) ) res0 <- cbind.data.frame( SimulationDescription,res0) Est.Results <- rbind(Est.Results, res0) } save(Est.Results, file=paste0("Carter/analysisResults/analysis_", basename(f)), compress="gzip") }